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A LOCAL DISCONTINUOUS GALERKIN METHOD FOR KDV-TYPE EQUATIONS*

JUE YAN! AND CHI-WANG SHU?

Abstract. In this paper we develop a local discontinuous Galerkin method for solving KdV type equa-
tions containing third derivative terms in one and two space dimensions. The method is based on the
framework of the discontinuous Galerkin method for conservation laws and the local discontinuous Galerkin
method for viscous equations containing second derivatives, however the guiding principle for inter-cell fluxes
and nonlinear stability is new. We prove L? stability and a cell entropy inequality for the square entropy
for a class of nonlinear PDEs of this type both in one and multiple spatial dimensions, and give an error
estimate for the linear cases in the one dimensional case. The stability result holds in the limit case when the
coefficients to the third derivative terms vanish, hence the method is especially suitable for problems which
are “convection dominate”, i.e. those with small second and third derivative terms. Numerical examples are
shown to illustrate the capability of this method. The method has the usual advantage of local discontinuous
Galerkin methods, namely it is extremely local and hence efficient for parallel implementations and easy for
h-p adaptivity.

Key words. discontinuous Galerkin method, KdV equation, stability, error estimate

Subject classification. Applied and Numerical Mathematics

1. Introduction. In this paper we develop a local discontinuous Galerkin method for solving KdV
type equations containing third derivative terms in one and multiple spatial dimensions. An example of such
PDEs is the original KdV equation [18]

ug + (au + Bu?)y + ougee =0, (1.1)

where «, 8 and o are constants. Our scheme can be designed and proven stable for more general nonlinear-

ities, namely

ug + f(w)e + (r'(W)g(r(w)s)z)e =0 (1.2)

in one space dimension for arbitrary (smooth) functions f, g and r, where ' (u) = %uﬂ, and

d d d
ut + Z filu)z, + Z ri(u) Zgij(m(U)zi)zj =0 (1.3)

T

in multiple spatial dimensions for arbitrary (smooth) functions f;, g;; and ;.

KdV type equations describe the propagation of waves in a variety of nonlinear, dispersive media and
appear often in applications. See, e.g. [1]. Various numerical methods have been proposed and used
in practice to solve this type of equations, see, e.g. [4, 5, 17]. However, in many situations, such as in
the quantum hydrodynamic models of semiconductor device simulations [15] and in the dispersive limit of
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conservation laws [19], the third derivative terms might have small or even zero coefficients in some parts
of the domain. We will call such cases as “convection dominated”. The design of stable, efficient and high
order methods, especially those for the “convection dominated” cases, i.e. when the third derivative terms
are small (Jo| < 1in (1.1)), remains a challenge.

The discontinuous Galerkin method is a class of finite element methods using completely discontinuous
piecewise polynomial space for the numerical solution and the test functions. One certainly needs to use
more degrees of freedom because of the discontinuities at the element boundaries, however this also gives one
a room to design suitable inter-element boundary treatments (the so-called fluxes) to obtain highly accurate
and stable methods in many difficult situations.

The first discontinuous Galerkin method was introduced in 1973 by Reed and Hill [20], in the framework
of neutron transport (steady state linear hyperbolic equations). A major development of the discontinuous
Galerkin method was carried out by Cockburn et al. in a series of papers [10, 9, 7, 11], in which they
established a framework to easily solve nonlinear time dependent hyperbolic conservation laws (i.e. (1.2)
and (1.3) without the third derivative terms) using explicit, nonlinearly stable high order Runge-Kutta time
discretizations [22] and discontinuous Galerkin discretization in space with exact or approximate Riemann
solvers as interface fluxes and TVB (total variation bounded) nonlinear limiters [21] to achieve non-oscillatory
properties for strong shocks.

The discontinuous Galerkin method has found rapid applications in such diverse areas as aeroacoustics,
electro-magnetism, gas dynamics, granular flows, magneto-hydrodynamics, meteorology, modeling of shallow
water, oceanography, oil recovery simulation, semiconductor device simulation, transport of contaminant in
porous media, turbomachinery, turbulent flows, viscoelastic flows and weather forecasting, among many
others. Good references for the discontinuous Galerkin method and its recent development include the
survey paper [8], other papers in that Springer volume, and the review paper [13].

The original discontinuous Galerkin method was designed to solve first order hyperbolic problems. A
simple example to illustrate the essential ideas is the linear transport equation

ug +uy =0. (1.4)

Let’s denote the mesh by I; :[xj_%,ijr%], for j = 1,...,N, with the center of the cell denoted by z; =

1 (xj_% + xj+%> and the size of each cell by Az; = z;, 1 — z;_1. We will denote Az = max; Az;. If we

multiply (1.4) by an arbitrary test function v(x), integrate over the interval I;, and integrate by parts, we
get

/ ugvdxr — / wpde +u(@;p 1, (e, 1) — w1, tv(z;_1) = 0. (1.5)
I; I

This is the starting point for designing the discontinuous Galerkin method. We replace both the solution u
and the test function v by piecewise polynomials of degree at most k. That is, u,v € VA, where

Vaz = {v: vis a polynomial of degree at most k forx € I;, j=1,.,N}. (1.6)

With this choice, there is an ambiguity in (1.5) in the last two terms involving the boundary values at Tip1,
as both the solution u and the test function v are discontinuous exactly at these boundary points. The
idea is to treat these terms by an upwinding mechanism (information from characteristics), borrowed from
successful high resolution finite volume schemes. Thus u at the interfaces T;p1 is given by a single valued

numerical flux ﬁji% =u determined from upwinding, and v at the interfaces Tjp1 are given by the

+3



values taken from inside the cell I;, namely U]._Jrl and U;’__l. Notice that we use v~ and vT to denote the left
2 2

and right limits of v, respectively, at the interface where v is discontinuous. For more general nonlinear fluxes
f(w), the only difference is that the single valued flux fj +1 would be taken as a monotone flux depending on
+

i+
of the lines ODE is then discretized by the nonlinearly stable high order Runge-Kutta time discretizations

both uj_+% and on u (exact or approximate Riemann solvers in the system case). The resulting method
[22]. Nonlinear TVB limiters [21] may be used if the solution contains strong discontinuities. The schemes
thus obtained, for solving hyperbolic conservation laws ((1.2) and (1.3) without the third derivative terms),
have the following attractive properties:

1. It can be easily designed for any order of accuracy. In fact, the order of accuracy can be locally
determined in each cell, thus allowing for efficient p adaptivity.

2. It can be used on arbitrary triangulations, even those with hanging nodes, thus allowing for efficient
h adaptivity.

3. It is extremely local in data communications. The evolution of the solution in each cell needs to
communicate only with the immediate neighbors, regardless of the order of accuracy, thus allowing
for efficient parallel implementations. See, e.g. [3].

4. Tt has excellent provable nonlinear stability. One can prove a strong L? stability and a cell entropy
inequality for the square entropy, for the general nonlinear cases, for any orders of accuracy on
arbitrary triangulations in any space dimension, without the need for nonlinear limiters [16].

In [12] these discontinuous Galerkin methods were generalized to solve convection diffusion problems
containing second derivative terms. This was motivated by the successful numerical experiments of Bassi
and Rebay [2] for the compressible Navier-Stokes equations. The idea can be illustrated with the simple
heat equation

Ug — Ugg =0 (17)
which we rewrite into a first order system
Ut — ge =0, q—uz =0, (1.8)

we can then formally use the same discontinuous Galerkin method for the convection equation to solve (1.8),
resulting in the following scheme: find u, ¢ € VA, such that, for all test functions v, w € Va,,
5 - 5 +
/Ij ugvdx + /Ij qugpdx — 43541 + 431 = 0
/ qwdx+/ Wy dr — G aw. o + Uy wt , =0. (1.9)

I I
However, there is no longer a upwinding mechanism or characteristics to guide the design of the fluxes 4; +1
and ¢; 1 The crucial part in designing a stable and accurate algorithm (1.9) is a correct design of these
fluxes. In [12], criteria are given for these fluxes to guarantee stability, convergence and a sub-optimal error
estimate of order k for piecewise polynomials of degree k. The (most natural) central fluxes

1 1
i1 = 5 (u, + T P +
Yit: T g (“j+l +“j+%)’ %Gi+s =3 (qj-}-% +qj+%) (1.10)

2

o

would satisfy these criteria and give a scheme which is indeed sub-optimal in the order of accuracy for odd
k (i.e. the accuracy is order k rather than the expected order k + 1 for odd k). This deficiency however is
easily removed by going to a clever choice of fluxes, proposed in [12]:

p - 5 _ .+
Ujpl = Uy G+y = g (1.11)



i.e. we alternatively take the left and right limits for the fluxes in u and ¢ (we could of course also take
+

i+3
central fluxes in (1.10), and this easily generalizes to multi space dimensions on arbitrary triangulations.

the pair u and q;r% as the fluxes). Notice that the evaluation of (1.11) is simpler than that of the
The accuracy now becomes the optimal order k + 1 for both even and odd k.

The schemes thus designed for the heat equation (1.7), or in fact for the most general multi dimensional
nonlinear convection diffusion equations (nonlinear both in the first derivative convection part and the second
derivation diffusion part), retain all the four nice properties listed above for the method used on convection
equations. Moreover, the appearance of the auxiliary variable ¢ is superficial: when a local basis is chosen
in cell I; then g is eliminated and the actual scheme for u takes a form similar to that for convection alone.
This is a big advantage of the scheme over the traditional “mixed methods”, and it is the reason that the
scheme is termed local discontinuous Galerkin method in [12]. Even though the auxiliary variable ¢ can be
locally eliminated, it does approximate the derivative of the solution u to the same order of accuracy, thus
matching the advantage of traditional “mixed methods” on this.

The purpose of this paper is to develop a similar local discontinuous Galerkin (LDG) method for the
KdV like equations (1.1), (1.2) and (1.3) containing third derivative terms. Our objective is to design the
method to retain again all the four nice properties listed above for the method used on convection and
convection-diffusion equations, plus the feature that the method is local, namely the auxiliary variables
introduced to approximate the first and second derivatives of the solution could be locally eliminated.

We will give a “preview” of the method on the simple linear equation
Ut + Ugge =0 (1.12)
which we again rewrite into a first order system
Ut +py =0, p—g; =0, q—uy =0. (1.13)

We can then formally use the same discontinuous Galerkin method for the convection equation to solve
(1.13), resulting in the following scheme: find w,p,q € Va, such that, for all test functions v, w,z € Va,,

_ - - _ A ot
/Iutvdx /,p%dx—i_pﬂ%vﬂ% p]_%vj_%—o,

/pwdx+/ qwap,dgv—cjjJr%u)j_Jrl+cjj_;wJ.r =0, (1.14)
I I 2

i i

—_ A. - A. + =
/L qzdx+/I uzgdx u]+%zj+%+u]_%zj_% 0.

J J
However, the fluxes p; 1 d; +1 and 1, +1 must be designed based on different guiding principles than the

first order convection or second order diffusion cases. The crucial part in designing a stable and accurate
algorithm (1.14) is again a correct design of these fluxes. It turns out that the simple choices

A _ -+ A _ + A _ —
Pivy =Py 1 dipy =Gy Gipr =ug, (1.15)
2 2

would guarantee stability and convergence, as can be proven later in this paper and also clearly seen in Table
1.1, which contains numerical L? and L™ errors and orders of accuracy for the computed solution u for the
method (1.14) with the fluxes (1.15) solving the equation (1.12) with an initial condition w(x,0) = sin(z)
over the interval [0, 27] and periodic boundary conditions, at ¢ = 1, using uniform meshes.



TABLE 1.1

ut + Ugze = 0. u(z,0) = sin(z). Periodic boundary conditions. L> and L™ errors. Uniform meshes with N cells. LDG
methods with k =0,1,2,3. t =1.

k N=10 N=20 N=40 N=80
error error order error order error order
0| L? | 2.2534E-01 | 1.2042E-01 | 0.91 | 6.2185E-02 | 0.95 | 3.1582E-02 | 0.98
L*>* | 4.3137E-01 | 2.1977E-01 | 0.97 | 1.1082E-01 | 0.98 | 5.5376E-02 | 1.00
1| L? | 1.7150E-02 | 4.2865E-03 | 2.00 | 1.0716E-03 | 2.00 | 2.6792E-04 | 1.99
L*> | 5.8467E-02 | 1.5757E-02 | 1.89 | 4.0487E-03 | 1.96 | 1.0210E-03 | 1.99
2 | L? | 8.5803E-04 | 1.0823E-04 | 2.98 | 1.3559E-05 | 2.99 | 1.6958E-06 | 3.00
L*>* | 4.0673E-03 | 5.1029E-04 | 2.99 | 6.4490E-05 | 2.98 | 8.0722E-06 | 3.00
3 | L? | 3.3463E-05 | 2.1035E-06 | 3.99 | 1.3166E-07 | 3.99 | 8.2365E-09 | 3.99
L*> | 1.8185E-04 | 1.1157E-05 | 3.97 | 7.2362E-07 | 3.99 | 4.5593E-08 | 3.99

We remark that the choice for the fluxes (1.15) is not unique. In fact, the crucial part is to take p and
4 from opposite sides and to take ¢ from the right. Thus

S 5ot
Pivy =Piry G+ = Gy

would also work.

The organization of the paper is as follows. In section 2 we describe the method for the one dimensional
case, and prove its nonlinear L? stability and a cell entropy inequality, as well as an error estimate for the
linear case. In section 3 multiple spatial dimensional case is considered, where the nonlinear stability is given
for the general triangulations. In section 4 we provide several numerical examples to illustrate the capability
of the method. Concluding remarks and remarks about future work are given in section 5.

2. The LDG method for the one dimensional case. In this section, we present and analyze the

LDG method for the following one dimensional nonlinear problem:

ug + fu), + (r'(wg(r(w)z)e)s =0, 0<z<1 (2.1)

with an initial condition

uw(z,0) =u’(z), 0<z<1 (2.2)

and periodic boundary conditions. Here f(u), r(u) and g(g) are arbitrary (smooth) nonlinear functions.
Notice that the assumption of periodic boundary conditions is for simplicity only and is not essential: the
method can be easily designed for non-periodic boundary conditions. Also notice that the linear equation
(1.12) and the KdV equation (1.1) are both special cases of (2.1).

To define the LDG method, we first introduce the new variables

q =1, P=9(0)s (2.3)
and rewrite the equation (2.1) as a first order system:
ue+ (fw) +1'(Wp)e =0, p—9g(@)e =0, q¢—r(w)s=0. (2.4)



The LDG method is obtained by discretizing the above system with the discontinuous Galerkin method. This
is achieved by multiplying the three equations in (2.4) by three test functions v, w, z respectively, integrate
over the interval I;, and integrate by parts. We also need to pay special attention to the boundary terms
resulting from the procedure of integration by parts, as mentioned in the previous section. Thus we seek
piecewise polynomial solutions u,p, ¢ € Va,, where Va, is defined in (1.6), such that for all test functions
v,w,z € Va, we have, for 1 < j < N,

/1 ugvde — /1 (f(u) + ' (w)p)vedz + (f + Pﬁ)

; i ]+% U]“F% .7_%
/I pwdz + /1 g(qQ)wydx — gj+%wj_+% + gj_%w;_% =0, (2.5)

] ]
/Ij qzdr + /Ij r(u)zydx — fj+%zj_+% + fj_%zf 1= 0.

Notice that we still use letters without a subscript Az to denote functions in the finite element space Vag, to

simplify the notations. The only ambiguity in the algorithm (2.5) now is the definition of the numerical fluxes

(the “hats”), which should be designed based on different guiding principles than the first order convection

or second order diffusion cases to ensure stability. It turns out that we can take the simple choices (we omit

the subscripts j £ % in the definition of the fluxes as all quantities are evaluated at the interfaces xji%)

. ~ vty —r(w) . .

f:f(u_7u+)a r = Wa p=pr, g:g(q_aq+)7 f:T(U_) (26)

where f(u=,u") is a monotone flux for f(u), namely f(u~,u") is a Lipschitz continuous function in both
arguments w~ and uT, is consistent with f(u) in the sense that f(u,u) = f(u), and is a non-decreasing
function in 4~ and a non-increasing function in w*. Likewise, —g(q~—,¢") is a monotone flux for —g(q),
namely G(qg—,q") is a Lipschitz continuous function in both arguments ¢~ and g%, is consistent with g(q)
in the sense that g(q,q) = g(q), and is a non-increasing function in ¢~ and a non-decreasing function in q*.
Examples of monotone fluxes which are suitable for discontinuous Galerkin methods can be found in, e.g.
[10]. We could for example use the simple Lax-Friedrichs flux

Fmuh) = o (fu) + fuh) —a(ut —u7)), a = max | f'(u)|. (2.7)

N | =

where the maximum is taken over a relevant range of u. The algorithm is now well defined.
We remark that the choice for the fluxes (2.6) is not unique. In fact, the crucial part is to take p and ¢
from opposite sides. Thus

rut) —rw™)

f=fwuh), o= T - b=r 9=4(.q"), F=ru

would also work.

We also remark that the algorithm (2.5)-(2.6) is very easy for numerical implementation. Given u, one
first uges the third equation in (2.5) to obtain ¢. This is achieved locally: ¢ in I; can be obtained with the
information of « in the cells I; and I;_;. The second equation in (2.5) is then used to obtain p locally: p in
I; can be obtained with the information of ¢ in (at most) the cells I;, I;_; and I;y;. Finally, the update of
the solution u is obtained using the first equation in (2.5), again locally, namely the update of u in I; can
be obtained with the information of u in (at most) the cells I;, I;_; and I;1; and that of p in the cells I;
and ;4.



We have the following “cell entropy inequality” for the scheme (2.5)-(2.6). This is a generalization of
the cell entropy inequality obtained in [16] for the discontinuous Galerkin method applied to hyperbolic

conservation laws (equation (2.1) with g(q) = 0).

Proposition 2.1. (cell entropy inequality) There exist numerical entropy fluxes H i such that the solution
to the scheme (2.5)-(2.6) satisfies

d u?(z,t) N 5

Proof: We sum up the three equalities in (2.5) and introduce the notation

) <0. (2.8)

[N

Bi(wpgiv,w.) = [ wds = [ (f@ +r@pade+ (F+75) v,

I I i+

_(f+7313)‘ vl +/1 pwdw+/ g(q)w:cdx—gﬂ%w];% (2.9)

-7_% = I;

[N

3

0 + _— A. - A. +
953wy +/Ij qzdw+/lj r(u)zydx TiviZip1 TT-1%

Clearly, the solutions u, p, ¢ of the scheme (2.5)-(2.6) satisfy
Bj(uapa QQanaz) =0 (210)

for all v,w,z € Va,. We then take

to obtain, after some algebraic manipulations,

d w?(z,t .
0= Bj(uapaq;u7Q7 _p) = %/ < (2 )> dr + (Hj+% - Hj_%) +®j—%
I;

with the numerical entropy flux H defined by
H=—F(u)+Glg") = r(u)p” + (f+75) u” = ga~ +7p~

and the extra term © given by

Here

and

denotes the jump of v. Notice that we have dropped the subscripts about the location j — % or j+ % as

all these quantities are defined at a single interface and depend only on the left and right values at that
interface. Now all we need to do is to verify © > 0. To this end, we notice that, with the definition (2.6) of

the numerical fluxes and with simple algebraic manipulations, we easily obtain

[r(u)p] — r'plu] — #[p] = 0



and hence
0 =[F(u [u] - [G(9)] + gld]

n-
(9= Fumou)) ds= [ (alo) = atama) ds (211)

a

U
=/
>0,
where the last inequality follows from the monotonicity of the fluxes f and —g. This finishes the proof. O

Now the L? stability of the method is a trivial corollary:

Corollary 2.1. (L? stability) The solution to the scheme (2.5)-(2.6) satisfies the L? stability

d ! [(u?(z,1)
— e <0. 2.12
i/, < 5 > de <0 (2.12)

Proof: We simply add up (2.8) over j. O

About time discretizations, if we denote the semi-discrete LDG method (2.5)-(2.6) by

us = R(u),
then the following implicit 8 scheme
n+l _ ., n
% = R(u™?), u"tl = (1 - 9" + umt? (2.13)

will also satisfy the same cell entropy inequality and L? stability as long as % < 6 < 1. Notice that this
includes the first order backward Euler and second order Crank-Nicolson implicit time discretizations as

special cases. See [16] for the purely hyperbolic case.

Proposition 2.2. (implicit time discretization) The cell entropy inequality and the L? stability also hold
for the time discretization (2.13) with 7 < 6 < 1 for the scheme (2.5)-(2.6). That is,

/1 | <(un+1(x))22A—t (u"(w))2> de + HI'H — H'H <0, (2.14)
and
/l(un+1 (517))2(1:1: < /l(u"(x))2dx (215)
Y 0

n+6

Proof: If we take the test functions at n + 60, e.g. v =u given by (2.13), we obtain just as before

u"t (2) = u™(@) 10 g A
- de + H* —H*? <0
/Ij A
which can be rewritten as

/I <(un+1(x))22A; (u"(w))2> i +H]":§ 3 H]"fg 4 <0 3 %) /I <(u"+1 (w)A—t u"(x))2> dz < 0.

J

Thus, a sufficient condition to get the cell entropy inequality (2.14) is just 6 > 1. Again, (2.15) is

obtained simply by adding up (2.14) over j. O



The stability result obtained here can be used to get an error estimate in L? for the numerical solution u,
when the equation (2.1) is linear. Without loss of generality we may take f(u) = u, g(q) = ¢ and r(u) = v,
resulting in the equation

uf +ud +ug,, =0. (2.16)

Noticed that we have used the notation u°¢ to denote the exact solution of the PDE in order not to confuse
with the numerical solutions. We have the following result, where C here and below denotes a generic
constant which may be of different values at different locations.

Proposition 2.3. (error estimate) The error for the scheme (2.5)-(2.6) applied to the linear PDE (2.16)
satisfies

\//1 (ue(z, 1) — u(z, )’ do < CAzF*3, (2.17)
0

where the constant C' depends on the derivatives of 4¢ and time ¢.

Proof: First, we notice that, in this linear case, most monotone fluxes simply become upwinding

fw ,uh=u",  §q,q") =q",

and this is what we will assume. It is then easy to work out the exact form of © in (2.11) for the cell entropy
inequality to be

([ul® +[a?) - (2.18)
We now notice that the exact solution of the PD
Bj(ue’pe’qe; U,U),Z) =0

for all v,w, 2 € Va,, where B; is defined by (2.9). Taking the difference between the above equality and
(2.10), we obtain the error equation

Bj(u® = u,p* —p,¢* — g;v,w,2) =0 (2.19)

for all v,w,z € Va,. As usual this error equation is the basic starting point of error estimates.
We now take

v=8u’-u, w=P¢—-q,  z=p-Pp° (2.20)
in the error equation (2.19). Here P is the standard L? projection into Va,, that is, for each j,

/ (Pw(x) — w(x))v(z)de =0 Yu € Pk,
I;

where P* denotes the space of all polynomials of degree at most k. In other words, the difference between
the projection Pw and the original function w is orthogonal to all polynomials of degree up to k in each
interval. § is a special projection into Va, which satisfies, for each j,

/ (Sw(z) — w(z))v(z)de =0 Yve P! and Sw(xj_H/Q) = w(xj_H/Q),
I;



in other words, the difference between the projection Sw and the original function w is orthogonal to all
polynomials of degree up to k¥ — 1 in each interval, and the projection agrees with the function at the right
boundary in each interval. This special projection is needed for u because we have no control on the jumps
of p in the cell entropy inequality, see (2.18). Substituting (2.20) into the error equation (2.19) and moving

terms, we obtain
Bj(v,—z,w;v,w, 2) = B;(v*, —2%, w®;v,w, 2) (2.21)
where v, w, z are given by (2.20), and v¢, w¢, 2¢ are given by
v® = Su® — u’, w® = Pqg° — ¢°, 2¢ =p® — Ppc. (2.22)

By the same argument as that used for the cell entropy inequality, the left hand side of (2.21) becomes

d v? . .
Bj(v,—z,w;v,w,z): % . ? dIL'+ (Hj+% —Hj_%> +®j—% (223)
where, by (2.18),
1
The right hand side of (2.21) can be written out as
B; (v, =25 w%v,w,2) =T +IT+IIT + 1V (2.25)
where
1= / vivdz, (2.26)
1;
77 = —/ zewdx+/ wezdx—/ (v® —ze)v$dx+/ wew,,dx+/ vz dz, (2.27)
1; I; I; 1; I;
€ - € + € + € -
77 = - (Uj_%> - (zj_%> [v]—1 + (wj_%> [w]j—1 + (Uj_%> [2]5-1, (2.28)
and

for some flux function h. Notice that v, w, z are given by (2.20) and v¢, w®, ¢ are given by (2.22), respectively.

1

Now, by using the simple inequality ab < i(a® + b?), and standard approximation theory on v§ =
Y g 2 t

Suf — uf),, see, e.g. [6], we have
t

2
< C’Aw?kJr3 +/ <%> dx.
I;

Because P is a local L? projection, and S, even though not a local L? projection, does have the property that
w—Sw is locally orthogonal to all polynomials of degree up to k—1, all the terms in Z7 are actually zero. The
last term in ZZ7 is zero, because of the special interpolating property of the projection S. An application
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of the simple inequality ab < %(a2 + b?) for the first two terms in ZZ7 and standard approximation theory
on the point values of v¢ — 2¢ = (Su® — u®) + (Pp° — p°) and of w® = Pg¢°® — ¢° (see, e.g. [6]) then gives

1
TIT < C(Az34? + AxdF? + 1 ([v]? + [w]?) .

Finally, 7V only contains flux difference terms which will vanish upon a summation in j.
Combining all these and summing over j we obtain the following inequality

%/01 <§> dz + % (W + [w]?) < CAH + /01 <§> dz.

An integration in ¢ plus the standard approximation theory on v¢ = Suf — u® then gives the desired error
estimate (2.17). O

3. The LDG method for the multiple dimensional case. In this section, we generalize the scheme
discussed in the previous section to multiple spatial dimensions z = (1, -+ ,x4). We solve the following

nonlinear problem:

d d d
ug + Zﬁ(u)gC + Z ri(u) Zgij(ri(u)m)m =0, 0<x;<1, ¢=1,---,d (3.1)
i=1 i=1 j=1

T

with an initial condition
w(z,0) =u’(z), 0<a; <1, i=1,---,d (3.2)

and periodic boundary conditions. Here f;(u), r;(u) and g¢;;(¢) are arbitrary (smooth) nonlinear functions.
Notice that the agssumption of a box geometry and periodic boundary conditions is for simplicity only and
is not essential: the method can be easily designed for arbitrary domain and for non-periodic boundary
conditions.

Let’s denote a triangulation of the unit box by Ta,, consisting of non-overlapping polyhedra covering
completely the unit box. Hanging nodes are allowed. Here Az measures the longest edge of all polyhedra in
Taz- We again denote the finite element space by

V£, ={v: vis a polynomial of degree at most k for x € K, VK € Ta,}. (3.3)

Similar to the one dimensional case, to define the LDG method, we first introduce the new variables
d
Jj=1
and rewrite the equation (3.1) as a first order system:
d
ue+ > (fi(w) + rj(Wpi)e; =0,
i=1

d
Pi— Y 0ij(@)e; =0, @ —1i(w)e, =0, i=1---.d. (3.5)
j=1

The LDG method is obtained by discretizing the above system with the discontinuous Galerkin method.

This is achieved by multiplying the equations in (3.5) by test functions v, w;, z; respectively, integrate over

11



an element K € Ta,, and integrate by parts. We again need to pay special attention to the boundary
terms resulting from the procedure of integration by parts, as in the one dimensional case. Thus we seek
piecewise polynomial solutions u, p;, ¢; € V&C, where VAd:C is defined in (3.3), such that for all test functions

v, w;, 2 € VL, we have

d
/ upvdz =y / (fi(w) + i (wps)va,de + | hpgv™<ds =0,
K = /K oK

d
/ pawidz + 2/ 9i5(@:) (wi)o de —/ Gimgw™ds =0,  i=1,---.d (3.6)
K P e oK

/ q;zdx +/ ri(u)(2) e do —/ Fimg 25 ds = 0, i=1,---,d,
K K oK

where 8K is the boundary of element K, and the numerical fluxes (the “hats”) are defined similar to the
one dimensional cases, namely

S (et — ry(w™)) pf ng

UETIK — uintK

T F . int t
h'nK :an,K(uln Kaue:C K)+

Gimn = Gimme k(€™ ¢F), T = 1i(uT) ik 3.7
Here ng = (n1,k, -+ ,Na,x) is the outward unit normal for element K along the element boundary 0K,

u™x denotes the value of u evaluated from inside the element K, and 4%**% denotes the value of u evaluated
from outside the element K (inside the neighboring element). On the other hand, p* denotes the value of
p evaluated from a pre-designated “plus” side along an edge e, which is always the boundaries of two
neighboring elements. For example, we could choose a fixed vector 8 which is not parallel with any normals
of element boundaries, and then designate the “plus” side to be the side at the end of the arrow of the normal
n with n-8 > 0, see Figure 3.1. m(ui"tlf , u¢®tx) ig a monotone flux for f,,, (u) = Zle fi(u)n; i, namely
m(ui"tlf ,u®tx ) is a Lipschitz continuous function in both arguments u*"*% and u®*tx | is consistent with
frnx (w) in the sense that fn:(u, u) = fn, (u), and is a non-decreasing function in 4% and a non-increasing
function in u®®*%. Moreover, it is conservative (that is, there is only one flux at each edge shared by two

elements, added to the residue for one and subtracted from the reside for another), namely

an,K(a’ b) = _an/,K’ (b’ a)
where K and K' share the same edge where the flux is computed and hence ng: = —ng. Likewise,
—Gime k(g™ 5" is a monotone flux for —g; . (¢:) = — Z?Zl 9i;(@)nj k. Notice that we can again

use the one dimensional monotone fluxes as in the previous section. For example, we can use the simple
Lax-Friedrichs flux

d
Pt i ) = 2 (Z (™) + fi(u™*) ni g — a(us* — u)) : (38)
=1

o = max |fy, (w)],

where the maximum is taken over a relevant range of 4. The algorithm is now well defined.

Again, the algorithm (3.6)-(3.7) is very easy for numerical implementation. Given u, one first locally
solves for the ¢;, then locally solves for the p;, and finally locally solves for the update of u. All the advantages
listed for the method for the one dimensional case are still valid in this multiple dimensional case.

We still have the following “cell entropy inequality” for the scheme (3.6)-(3.7). The proof follows the

same lines as that for the one dimensional case, so we will omit it.
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Fia. 3.1. Illustration of the definition of “plus” and “minus” sides determined by a pre-determined vector 3.

Proposition 3.1. (cell entropy inequality) There exist conservative numerical entropy fluxes m such
that the solution to the scheme (3.6)-(3.7) satisfies

2 e ——
4 (@Y gy / H, xds <0. (3.9)
dt Jx 2 oK ’

The L? stability of the method is then again a trivial corollary, by summing up the cell entropy inequal-
ities over K:

Corollary 3.1. (L? stability) The solution to the scheme (3.6)-(3.7) satisfies the L? stability

%/Q <@> dz < 0. (3.10)

The same cell entropy inequality also holds for the implicit time discretizations:

Proposition 3.2. (implicit time discretization) The cell entropy inequality and the L? stability also hold
for the time discretization (2.13) with 7 < 6 < 1 for the scheme (3.6)-(3.7). That is,

L <(u"+ (x))ZA_t (u(z)) > dz + ~/8K I{/::\?de <0, (3.11)
and
/(u"+1(x))2dx < /(u"(w))2dx (3.12)
Q Q
O

Unfortunately, we could not get the optimal error estimate because of the lack of a suitable projection
S similar to the one dimensional case. However, numerical examples in the next section verify that the
accuracy holds as in the one dimensional case.
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TABLE 4.1
ut + Ugze = 0. u(x,0) = sin(x). Periodic boundary conditions. L? and L™ errors. Non-uniform meshes with N cells.
LDG methods with k =0,1,2,3. t = 1.

k N=10 N=20 N=40 N=80

error error order error order error order
0| L? | 2.2222E-01 | 1.2014E-01 | 0.88 | 6.2532E-02 | 0.94 | 3.1900E-02 | 0.97
L> | 4.3282E-01 | 2.2006E-01 | 0.97 | 1.1210E-01 | 0.97 | 5.8810E-02 | 0.93
1| L? | 2.0144E-02 | 5.2347E-03 | 1.94 | 1.3322E-03 | 1.97 | 3.3592E-04 | 1.98
L*> | 8.8110E-02 | 2.3302E-02 | 1.93 | 5.9387E-03 | 1.97 | 1.4969E-03 | 1.98
2 | L? | 9.8394E-04 | 1.1974E-04 | 3.03 | 1.4953E-05 | 3.00 | 1.8687E-06 | 3.00
L*> | 5.2084E-03 | 6.8421E-04 | 2.95 | 8.5138E-05 | 3.00 | 1.0728E-05 | 2.99
3 | L? | 7.3580E-05 | 4.6509E-06 | 3.98 | 2.9191E-06 | 3.99 | 2.0141E-08 | 3.86
L*> | 3.4438E-04 | 2.2260E-05 | 3.95 | 1.3992E-06 | 3.99 | 9.1039E-08 | 3.94

4. Numerical examples. In this section we provide a few preliminary numerical examples to illustrate
the accuracy and capability of the method. Attention has not been paid to efficiency in time discretizations,
so explicit third order Runge-Kutta method [22] is used. Study of suitable implicit time discretizations which
have efficient iterative solvers maintaining the local structure of the method is the subject of a future study.

We would like to illustrate through these numerical examples the high order accuracy of the methods
for both one dimensional and two dimensional, both linear and nonlinear problems. We would also like to
illustrate the good behavior of the method for the so-called convection dominated cases, namely the case
where the coefficients of the third derivative terms are small.

Example 4.1. We compute the solution of the linear one dimensional equation
U + Uggy = 0 (4.1)

with an initial condition u(z,0) = sin(z) and periodic boundary conditions (with 27 periodicity). The exact
solution is given by w(z,t) = sin(z + ¢). Both uniform meshes and non-uniform meshes are used. The
non-uniform meshes in this and later examples are a repeated pattern of 0.9Az and 1.1Ax with an even
number of elements. The L% and L*° errors and the numerical order of accuracy are contained in Table 1.1
(in section 1) for the uniform mesh case, and in Table 4.1 for the non-uniform mesh case. We can clearly
see that the method with P* elements are giving a uniform (k 4+ 1)-th order of accuracy in both norms for

both the uniform and the non-uniform meshes.

Example 4.2. We compute the solution of the linear two dimensional equation

with an initial condition u(x,y,0) = sin(z + y) and periodic boundary conditions (with 27 periodicity) in
both directions. The exact solution is given by u(z,y,t) = sin(z + y + 2¢). Both uniform and non-uniform
rectangular meshes are used. The non-uniform meshes are a repeated pattern of 0.9Ax and 1.1Az, in both
directions, with an even number of edges in both directions. The L? and L™ errors and the numerical order
of accuracy are contained in Table 4.2 for the uniform mesh case, and in Table 4.3 for the non-uniform mesgh
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TABLE 4.2

Ut + Ugge + Uyyy = 0. u(z,y,0) = sin(z + y). Periodic boundary conditions. L% and L™ errors. Uniform meshes with

N X N cells. LDG methods with k =0,1,2,3. t =1.

k 10x10 20x20 40x40
error error order error order

0| L? | 3.5528E-01 | 2.0535E-01 | 0.79 | 1.1090E-01 | 0.89
L*> | 7.1359E-01 | 4.0190E-01 | 0.82 | 2.1165E-01 | 0.92

1| L% | 3.3603E-02 | 9.0904E-03 | 1.89 | 2.4084E-03 | 1.92
L*> | 2.2074E-01 | 6.1899E-02 | 1.83 | 1.5962E-02 | 1.95

2 | L? | 3.8750E-03 | 4.8463E-04 | 2.99 | 6.0501E-05 | 3.00
L*> | 3.9084E-02 | 4.8902E-03 | 2.99 | 6.1274E-04 | 2.99

3| L? | 4.1491E-04 | 2.6426E-05 | 3.97 | 1.6550E-06 | 3.99
L*> | 4.2847E-03 | 2.8478E-04 | 3.91 | 1.7846E-05 | 3.99

TABLE 4.3

ut + Ugzs + Uyyy = 0. u(z,y,0) = sin(z + y). Periodic boundary conditions. L? and L™ errors. Non-uniform meshes
with N X N cells. LDG methods with k =0,1,2,3. t =1.

k 10x10 20x20 40x40
error error order error order
0 | L? | 3.5963E-01 | 2.0788E-01 | 0.79 | 1.1228E-01 | 0.88
L> | 7.3869E-01 | 4.0713E-01 | 0.85 | 2.1681E-01 | 0.91
1| L? | 3.4590E-02 | 9.1681E-03 | 1.92 | 2.3412E-03 | 1.97
L> | 2.5815E-01 | 7.2978E-02 | 1.82 | 1.8533E-02 | 1.97
2 | L? | 4.0949E-03 | 5.1285E-04 | 2.99 | 6.4054E-05 | 3.00
L™ | 5.0429E-02 | 6.3078E-03 | 2.99 | 8.0584E-04 | 2.97
3 | L? | 4.5434E-04 | 2.8854E-05 | 3.97 | 1.8080E-06 | 3.99
L> | 6.0982E-03 | 4.0321E-04 | 3.92 | 2.5340E-05 | 3.99

case. We can clearly see again that the method with P* elements are giving a uniform (k + 1)-th order of

accuracy for both the uniform and the non-uniform meghes.

Example 4.3. In order to see the accuracy of the method for nonlinear problems, we compute the classical

soliton solution of the KAV equation

ug — 3 (u2)$ + Ugyy =0

in —10 < < 12. The initial condition is given by

The exact solution is

u(z,0) = —2sech®(x),

u(z,t) = —2sech®(z — 4t).

15
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The KdV equation uz — 3(u2)w + Ugge = 0. u(x,0) = —2sech®(z). Boundary condition ({.4). L? and L>® errors.

TABLE 4.4

Uniform meshes with N cells. LDG methods with k =0,1,2,3. t = 0.5.

k N=40 N=80 N=160 N=320
error error order error order error order
0| L? | 2.5292E-01 | 1.9098E-01 | 0.40 | 1.3019E-01 | 0.55 | 7.9780E-02 | 0.71
L*> | 9.0170E-01 | 6.8651E-01 | 0.39 | 4.6405E-01 | 0.56 | 2.8531E-01 | 0.70
1| L? | 2.6512E-02 | 4.6652E-03 | 2.50 | 1.0108E-03 | 2.20 | 2.5906E-04 | 1.96
L*> | 1.4748E-01 | 3.4625E-02 | 2.09 | 1.1840E-02 | 1.55 | 3.3239E-03 | 1.83
2 | L? | 1.5317E-03 | 1.8083E-04 | 3.08 | 2.2642E-05 | 2.99 | 2.8335E-06 | 2.99
L*> | 1.7486E-02 | 2.7505E-03 | 2.66 | 3.5575E-04 | 2.95 | 4.4397E-05 | 3.00
3| L? | 2.0631E-04 | 1.3981E-05 | 3.88 | 8.9054E-07 | 3.97 | 5.6029E-08 | 3.99
L*> | 2.0155E-03 | 2.1462E-04 | 3.23 | 1.4461E-05 | 3.89 | 9.1140E-07 | 3.98
TABLE 4.5
The KdV equation uz — 3(u2)w + Ugge = 0. u(x,0) = —2sech®(z). Boundary condition ({.4). L? and L>® errors.
Non-uniform meshes with N cells. LDG methods with k =0,1,2,3. t = 0.5.
k N=40 N=80 N=160 N=320
error error order error order error order
0| L? 2.4530E-01 | 1.9004E-01 | 0.37 | 1.3390E-01 | 0.50 | 8.4635E-02 | 0.66
L*> | 1.0172E+00 | 7.6826E-01 | 0.40 | 5.3383E-01 | 0.52 | 3.3655E-01 | 0.66
1| L2 2.7042E-02 | 4.9065E-03 | 2.46 | 1.0555E-03 | 2.21 | 2.6978E-04 | 1.97
L*> | 1.4490E-01 | 4.1570E-02 | 1.80 | 1.3925E-02 | 1.57 | 3.9129E-03 | 1.83
2 | L? 1.9493E-03 | 2.0134E-04 | 3.27 | 2.4926E-05 | 3.01 | 3.1208E-06 | 2.99
L | 2.2876E-02 | 3.5163E-03 | 2.70 | 4.7161E-04 | 2.89 | 5.9033E-05 | 2.99
3| L? 3.0402E-04 | 1.5462E-05 | 4.29 | 1.0064E-06 | 3.94 | 6.3370E-08 | 3.99
L | 2.7735E-03 | 2.1464E-04 | 3.69 | 1.8358E-05 | 3.55 | 1.3119E-06 | 3.80

We compute the solution with two different boundary conditions. Table 4.4 (uniform mesh) and Table 4.5
(non-uniform mesh) give the errors of numerical solution at ¢ = 0.5 using the boundary condition

u(—10,¢t) = g1 (), ugz(12,t) = go(t), Uz (12, 1) = gs(t) (4.4)

where g¢;(t) corresponds to the data from the exact solution. Notice that the LDG method allows an easy
implementation of such boundary conditions. Table 4.6 (uniform mesh) and Table 4.7 (non-uniform mesh)
give the errors of numerical solution using the periodic boundary conditions. Although the exact solution is
not periodic, the large size of the computational domain allows the usage of periodic boundary conditions
with negligible error. We can see from these tables that the orders of accuracy are comparable to that for

the linear case.
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TABLE 4.6
The KdV equation uy — 3 (u2)w + Uger = 0. u(x,0) = —2sech?(x). Periodic boundary condition. L2 and L% errors.
Uniform meshes with N cells. LDG methods with k =0,1,2,3. t = 0.5.

The KdV equation uy — 3 (u2)w + Ugze = 0. u(z,0) = —2sech®(x). Periodic boundary condition.

Non-uniform meshes with N cells. LDG methods with k =0,1,2,3. t = 0.5.

k N=40 N=80 N=160 N=320
error error order error order error order
0| L? | 2.5292E-01 | 1.9098E-01 | 0.40 | 1.3020E-01 | 0.55 | 7.9822E-02 | 0.70
L°° | 9.0170E-01 | 6.8648E-01 | 0.39 | 4.6404E-01 | 0.56 | 2.8602E-01 | 0.69
1| L? | 2.6600E-02 | 4.6801E-03 | 2.50 | 1.0133E-03 | 2.20 | 2.5966E-04 | 1.96
L>® | 1.4778E-01 | 3.4403E-02 | 2.10 | 1.1930E-02 | 1.52 | 3.3404E-03 | 1.84
2 | L? | 1.5883E-03 | 1.8254E-04 | 3.12 | 2.2699E-05 | 3.00 | 2.8353E-06 | 3.00
Le° | 1.7729E-02 | 2.7130E-03 | 2.70 | 3.5359E-04 | 2.94 | 4.4350E-05 | 2.99
3| L? | 2.1442E-04 | 1.5566E-05 | 3.78 | 1.0318E-06 | 3.91 | 6.5818E-08 | 3.97
L°° | 1.9911E-03 | 2.2607E-04 | 3.14 | 1.5397E-05 | 3.88 | 9.7191E-07 | 3.98
TABLE 4.7

k N=40 N=80 N=160 N=320
error error order error order error order
0| L? | 2.4530E-01 | 1.9004E-01 | 0.37 | 1.3391E-01 | 0.50 | 8.4650E-02 | 0.66
L*> | 1.0172E400 | 7.6826E-01 | 0.40 | 5.3383E-01 | 0.52 | 3.3672E-01 | 0.66
1| L? | 2.7071E-02 | 4.9216E-03 | 2.46 | 1.0581E-03 | 2.21 | 2.7039E-04 | 1.97
L> | 1.4507E-01 | 4.1341E-02 | 1.81 | 1.3916E-02 | 1.57 | 3.9383E-03 | 1.82
2 | L? | 2.0350E-03 | 2.0344E-04 | 3.32 | 2.4988E-05 | 3.02 | 3.1228E-06 | 3.00
L> | 2.2916E-02 | 3.4702E-03 | 2.72 | 4.6922E-04 | 2.88 | 5.8972E-05 | 2.99
3| L? | 3.2212E-04 | 1.8451E-05 | 4.12 | 1.1715E-06 | 3.97 | 7.4102E-08 | 3.98
L*> | 2.8274E-03 | 2.2498E-04 | 3.65 | 1.9437E-05 | 3.53 | 1.3793E-06 | 3.81

L2 and L™ errors.

Example 4.4. In order to see the accuracy of the method for nonlinear problems with small coefficient for

the third derivative term, we compute the soliton solution of the generalized KdV equation [5]

4
u
Ug + Uy + <Z> + €ttyyr = 0,
z

in —2 < < 3, where we take € = 0.2058 x 10~%. The initial condition is given by

u(z,0) = Asech? (K(z — z0))

1
with A = 0.2275, 2 = 0.5, and K =3 (f;oi) *. The exact solution is

u(z,t) = Asech? (K(z — z¢) — wt)

where w = K (1 + f—g). We compute the solution using the boundary condition

U(—Z, t) =g (t)a

Ug (37 t) =92 (t)a
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TABLE 4.8
The GKdV equation (4.5) with initial condition (4.6) and boundary condition (4.7). L? and L™ errors. Non-uniform
meshes with N cells. LDG methods with k =0,1,2,3. t =1.

k N=160 N=320 N=640 N=1280

error error order error order error order
0| L? | 1.6566E-02 | 1.1259E-02 | 0.56 | 7.0817E-03 | 0.67 | 4.1526E-03 | 0.77
L*>* | 9.3056E-02 | 6.6829E-02 | 0.48 | 4.4502E-02 | 0.58 | 2.7539E-02 | 0.69
1| L? | 3.8554E-04 | 6.0675E-05 | 2.66 | 1.1784E-05 | 2.36 | 2.8635E-06 | 2.04
L*>* | 3.2635E-03 | 6.2508E-04 | 2.38 | 2.2689E-04 | 1.47 | 6.4595E-05 | 1.81
2 | L? | 8.2907E-06 | 9.5348E-07 | 3.12 | 1.1895E-07 | 3.00 | 1.5290E-08 | 2.96
L*>* | 1.6684E-04 | 2.2545F-05 | 2.88 | 3.0858E-06 | 2.87 | 3.9503E-07 | 2.97
3 | L? | 1.7005E-06 | 1.3664E-07 | 3.63 | 3.0527E-09 | 5.48 | 1.9206E-10 | 3.99
L*>* | 1.7607E-05 | 1.3291E-06 | 3.72 | 8.3962E-08 | 3.98 | 5.2861E-09 | 3.99

with a non-uniform mesh. The result is contained in Table 4.8.

Example 4.5. In this example we compute the classical soliton solutions of the KAV equation

u2
us + <?> + €ttyyy = 0. (4.8)
z

The examples are those used in [14].

The single soliton case has the initial condition
uo(z) = 3esech? (k(z — z0)) (4.9)

with ¢ = 0.3, 39 = 0.5, k = (1/2)4/c/e and € = 5 x 10~%. The solution is computed in z € [0, 2] with periodic
boundary conditions, using P? elements with 100 cells, and is shown in Figure 4.1.

The double soliton collision case has the initial condition
uo(z) = 3c¢1 sech? (ki (z — 1)) + 3cz sech® (ko (x — 22)) (4.10)

with ¢; = 0.3, co = 0.1, 1 = 0.4, 32 = 0.8, k; = (1/2)+/c;/e for i = 1,2, and € = 4.84 x 10~%. The solution
is computed in z € [0, 2] with periodic boundary conditions, using P? elements with 100 cells. and is shown
in Figure 4.2.

The triple soliton splitting case has the initial condition

uo(x) = %sech2 <jl_0—8le> (4.11)

with € = 10~ The solution is computed in z € [0,3] with periodic boundary conditions and is shown in
Figure 4.3.

Example 4.6. We compute in this example the KdV zero dispersion limit of conservation laws. The

equation is (4.8) with an initial condition
u(z,0) = 2 4+ 0.58in(27z) (4.12)

for z € [0, 1] with periodic boundary conditions, and we are interested in the limit when e — 0. Theoretical
and numerical discussions about this limit can be found in [19] and [23]. Here we are mainly concerned with
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Fi1a. 4.1. Single soliton profiles. Solutions of equation (4.8) with initial condition (4.9) and periodic boundary conditions
in [0,2] using P? elements with 100 cells. Top left: solution at t = 0; top right: t = 1; bottom left: t = 2; bottom right: space
time graph of the solution up to t = 3.

the capability of our numerical method in resolving the small scale solution structures in this limit when e
is small. For this purpose we compute the solution to t = 0.5 with € = 107%,1075,107¢ and 10~7 using P?
elements with 300 cells for the first two cases, 800 cells for the third case and 1700 cells for the last case.
We have verified that these are “converged” solutions in the sense that further increasing the number of
cells does not change the solutions graphically. These solutions are shown in Figure 4.4. Notice the physical
“oscillations” which are typical in such dispersive limits, see, e.g. [19]. Clearly our method is very suitable

to compute such solutions.
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F1a. 4.2. Double soliton collision profiles. Solutions of equation (4.8) with initial condition (4.10) and periodic boundary
conditions in [0,2] using P2 elements with 100 cells. Top left: solution at t = 0; top right: t = 1; bottom left: t = 2; bottom
right: space time graph of the solution up tot = 4.

5. Concluding remarks. We have designed a class of local discontinuous Galerkin methods for solving
KdV type equations containing third derivatives and have proven their stability for any spatial dimensions for
a general class of nonlinear equations. Numerical examples are shown to illustrate the accuracy and capability
of the methods, especially for the convection dominated cases where the coefficients of the third derivative
terms are small. Efficient implicit time discretizations which have efficient iterative solvers maintaining the
local structure of the method, accuracy enhancement study, and more numerical experiments with physically

interesting problems constitute an ongoing project.
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limits of conservation laws in Example 4.6.
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